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Abstract-Distribution of directional data is characterized by what is termed fabric tensors. A formal least 
square approximation is applied, and three kinds of fabric tensors are defined in connection with the choice 
of a basis of the space of functions on a unit sphere or a unit circle. All the resulting equations are 
Cartesian tensor equations, and they are interpreted in terms of the representation theory of the rotation 
group and the potential theory in electrodynamics. It is also shown how this characterization is related to 
the spherical harmonics expansion or the Fourier series expansion. Finally, a method of statistical test is 
presented in the Cartesian tensor form to check the true form of the distribution. A physical example is 
also given to illustrate the proposed technique. 

1. INTRODUCTION 
PHYSICAL and engineering systems involve not only scalar quantities but also vector and tensor 
quantities. Therefore, many experiments require measurement of orientations, e.g. orientations 
of velocity, polarization, or magnetization, principal axes of stress or strain, crystallographic 
axes, etc. Orientation of a surface is characterized by the direction of its normal vector, so that 
directional data also arise in observation of interfaces or crack surfaces in a material. After 
obtaining these directional data, we must interpret them in terms of given external control 
factors. A typical example is the study of the mechanics of granular materials from the 
microscopic viewpoint, where the material is idealized as an assembly of solid spheres or 
circuiar plates. There, a considerable achievement has been made in regard to techniques of 
observing the distribution of interparticle contact directions and theories of interpreting it in 
terms of the external loading [l-12]. 

The statistics of directional data is an old subject, perhaps dating back to Gauss, Bernoulli, 
Rayleigh, von Mises and the like, and the modern statistical approach was initiated by people 
like Pearson, Fisher and Rao, to name a few. (For details, see Mardia[l3].) However, these 
people have devoted themselves mainly to non-physical problems such as geography, biology, 
ecology and social study. If, on the other hand, the underlying problem is a physical one, any 
description of physical laws must be expressed in the frame indifferent form, i.e. tensor 
equations invariant to coordinate transformations[l4,15]. It seems, however, that existing 
theories on the statistics of directional data are lacking this point of view, or at least only small 
attention has been paid to it so far. 

In the following, the term “direction” or “orientation” actually means “axis”, and the 
direction indicated by a unit vector n is identified with that indicated by - II. Extension to the 
analysis of “truly directional” data is very easy. We first apply the least square approximation 
and define three kinds of “fabric tensors” in connection with the choice of a basis of the space 
of functions on a unit sphere or a unit circle. All the resulting equations are Cartesian tensor 
equations, and they are interpreted in terms of the representation theory of the rotation group 
and the potential theory in electrodynamics. We also examine the relationship to the spherical 
harmonics expansion and the Fourier series expansion. This consideration leads to many useful 
formulae of computing necessary quantities and converting one form into another. Finally, we 
present a method of testing whether observed data are regarded as a sample from a given 
distribution, applying the asymptotic statistical theory of testing the fitness of distribution by 
the use of the “Fisher information matrix”. This is also obtained in the form of Cartesian tensor 
equations. Both two and three dimensional cases are analyzed. 

As an illustrating example, we analyze the data of interparticle contact distribution of a two 
dimensional granular material observed by Konishi et al.[16] to demonstrate our technique. 
However, application of this theory is not limited to the mechanics of granular materials. It can 
be applied to a wide variety of physical, mechanical and geological problems. Moreover, it can 
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be combined with the so called “stereological principles” to detect the structural anisotropy 
from observed data on a random cross section. Our formulation gives a practical procedure 
expressed in Cartesian tensor equations[l7]. 

2. APPROXIMATION OFDISTRIBUTION AND FABRIC TENSORS 

Let PI”‘, tP, . . . and ncN) be observed directional data, where each member is a unit vector. 
The most fundamental quantities are various averages of them. Since we are trying to seek 
tensor quantities to characterize the data distribution, we first consider the average of their 
tensor product, or the “moment”, and put 

Ni,i2...in = (ni,$ . * . %,>7 (2.1) 

where () designates the sample mean, e.g. (ain)) = C&“=, n~“‘n~‘/N. We term Ni,,..i” the “moment 
tensor” or the “fabric tensor of the first kind” of rank n. This is a symmetric tensor, and any 
contraction of it lowers the rank, e.g. lVijk,mm = Nirkl, etc. due to nini = 1. (Throughout this paper, 
we adopt the summation convention over tensor indices). This tensor plays a fundamental role 
in deriving tensor quantities characterizing the sample distribution, for all relevant information 
is contained in this tensor. However, it is not easy to understand the intuitive meaning of this 
tensor, and hence we now try to derive various characteristics in connection with the form of 
the “distribution density” of n. Let f(n) be the “empirical” distribution density, namely 

f(n) = + g, 6(n - da)). (2.2) 

In the three dimensional case, S(n - n’“‘) = S(0 - t?‘“‘)S(4 - 4’“‘)lsin 0@, where a(.) is the Dirac 
delta function, and 8 and 4 denote the spherical coordinates of n, i.e. n’“‘= (sin 0’a’ cos eta), 
sin eta” sin ecol’, cos 0(a)). In the two dimensional case, S(n - n’“? = 8(0 - fl’“‘), where 0 is the 
polar coordinate of n, i.e. n’“’ = (cos flea), sin @). Then, it is easy to see 

f(n) dn = 1, ni, . . . %f(n) dn = (ni, . . . a,,), (2.3) 

where dn is the differential solid angle, i.e. J dn = Jo” _f? sin 0 d+ d0 in the three dimensional case 
and J dn = Jp de in the two dimensional case. In general, (.) = J(.)f(n) dn. However, f(n) is a 
very singular function. Hence, we now try to approximate the empirical distribution density 
f(n) by a smooth one. This problem of smoothing is also viewed as a problem of estimating the 
“true” population distribution. 

In general, the estimation of distribution is achieved by first assuming a “model” or a 
“parametric form”, i.e. a family of distributions involving several parameters and second 
introducing some form of “measure of approximation” or the “distance” between two dis- 
tributions. Then, the parameters are chosen in such a way that the introduced measure of 
approximation is maximized or the distance is minimized. Let f(n) be a given distribution 
density, and consider a problem of approximating it by F(n) which involves indeterminate 
parameters. Typical parametric forms of F(n) are: 

(1) 

(II) 

(III) 

F(n) = C + Cifli + CijQnj + Cijknifljnk t ' ' ' , (2.4) 

F(n)= [C + Cini t Cijninj t Cijkninjnk t ' ' 'I*, (2.5) 

F(n)= exp[C t Cini t Cijflinj t Cijkninjnk t ' * '1. (2.6) 

Equation (2.4) is a polynomial in n and hence is easy to handle. However, the coefficients must 
be chosen so that F(n) does not become negative. Equation (2.5) is always non-negative, and 
eqn (2.6) is always positive. The form of eqn (2.6) is sometimes referred to as the “exponential 
family”[18], [19] and is an extension of the “von Mises distribution” in the two dimensional 
case and the “Fisher distribution” in the three dimensional case (see[13]). 



(I’) 

(II’) 
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L [F(n) -f(n)]’ dn + min, 
J 

I [d/F(n) - q/f(n)]* dn + min, 

f(n) f(n) log F(n) dn+max. (2.9) 

All of these are applied on the condition that J F(n) dn = 1. Criterion (I’) is the “least square 
error approximation”, or the approximation in L* on S* (a unit sphere) or on S’ (a unit circle). 
This can be applied if f(n) is the empirical density of eqn (2.2) because (I’) is equivalent to 
JF(n)f(n) dn + max., and eqn (2.2) is an integrable function over S* or S’. The measure of (II’) 
is sometimes referred to as the “Hellinger distance”. However, it cannot be applied to the 
empirical density of eqn (2.2) because its square root is not defined. The measure of (III’) is the 
“entropy”[7] or the “Kullback information”[20]. It is derived as the logarithm of the prob- 
ability that the empirical distribution f(n) is observed when the true population distribution is 
F(n) in the limit of an infinite number of samples. It can be applied if f(n) is the empirical 
density of eqn (2.2) because (III’) is equivalent to J f(n) log F(n) dn-+max., which yields the 
“maximum likelihood estimation”. Both the measure of (II’) and the square root of the measure 
of (I’) give true “distances”, satisfying the triangular inequality and being symmetric, while that 
of (III’) is only a “quasi-distance”. 

All these measures are invariant to coordinate rotations and hence have invariant meanings. 
In the case of “linear” distributions, i.e. in the case of non-directional scalar data, only (II’) and 
(III’) are invariant to transformations of the coordinate system. As we can see in the following, 
the mathematical structure for distributions of directional data is very much different from 
those of linear distributions, due to the fact that a distribution density of directional data is a 
function on S2 or S’, both of which is a topologically “compact” space. 

Many other parametric forms and measures of approximation are possible, and any 
combination of a parametric form and a measure of approximation could be adopted for 
parameter estimation. In this paper, however, we consider only (I) and (I’). This is because this 
pair alone derives characteristics of distributions in terms of linear expressions of Ni,,..i,‘s. All 
necessary quantities are explicitly determined by linear calculations. Instead, of course, 
approximated distributions could be negative theoretically. However, this does not happen for 
most of practical problems. Moreover, our aim is not to describe distributions accurately but 
rather to characterize them by tensors, which are then related to macroscopic physical 
quantities. If the form of distribution itself is our aim, then other forms and measures must be 
employed at the cost of simplicity. 

As we see later, the least square approximation of the polynomial expansion turns out 
nothing but the spherical harmonics expansion in the three dimensdional case and the Fourier 
series expansion in the two dimensional case. Thus, the use of spherical coordinates or polar 
coordinates would make the formulation much more familiar to us. However, our purpose is to 
derive tensor characteristics, which we generally term “fabric tensors”, invariant to coordinate 
transformations, and hence we try to derive useful formulae and schemes of statistical testing 
in Cartesian tensor equations. 

3. FABRIC TENSORS OF THE SECOND KIND 

We first consider the three dimensional case. We assume that for each orientation a pair of 
unit vectors with opposite directions are to be generated so that f(n) is a symmetric function 
with respect to the origin. (The case of non-symmetric distribution is discussed later.) Combin- 
ing (I) and (I’) of the previous section, let us consider the following scheme: 

E = [(C + Cirnihi + Cirkrhinjhknl+ . . *) -f(n)]’ dn + min. (3.1) 
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Terms of odd powers of II need not be included, since f(n) is symmetric. However, it is easy to 
see that the coefficients are not uniquely determined. This is because 1, ninj, ninjflkn, . . . are not 
linearly independent. In fact, contraction of ninj over i = j yields 1, contraction of ninjnknl over 
k = I yields ninj and so on. Let V, be the vector space of functions on S’ spanned by 
?li, . . . nin’s. In view of the symmetry, its dimension is (n + l)(n + 2)/2. What we have observed 
is that V, C Vz C V, C . . Hence, if we want approximation up to the nth order, ni, . . nin alone 
is sufficient as a basis. This means that it is sufficient to assume the nth approximation in the 
form 

f(n)-;jlF ,_.. in%,. . . h,, WI 

from the beginning. We call the coefficient tensor Fi,,,,i, the “fabric tensor of the second kind” 
of rank n. It is determined by dE/dFi, .,-in = 0, where E is the square error of the form of eqn 
(3.1). The equation becomes 

Fj, _,j,nj, . . . nj,ni, . * . nin = Ni,...inj (3.3) 

where we have put 7 = J(.) dn/4T. Making use of identity 

where 8, is the Kronecker delta and () designates the symmetrization of the indices, and taking 
successive contraction of eqn (3.3), we can determine all components of Fi,,,,i”. It takes on the 
form 

(3.5) 

An explicit expression for a: is given in the next section. 

Example 3.1 

F= 1, (3.6) 

(3.7) 

, (3.8) 

(3.9) 

Expression (3.2) in terms of Fi,,,,?. has a compact form, and the number of tensor 
components necessary to compute is munmum. However, this approximation is inflexible. For 
example, suppose we want the (n + 2)th approximation. Then, we must recompute the tensor all 
the way from the beginning. Is it not possible that the tensor is decomposed into several parts in 
such a way that some still have sense in higher approximations? This is exactly the problem of 
decomposing ni, . . . ni,‘s into several meaningful groups. This is done as follows. 

Since VOCV2CV4C..., as we have observed, let W, = V, and let W, (n = 2,4, . . .) be the 
“orthogonal complement” of V,_, in V,,, i.e., V,, = W,, $ Vne2 (direct sum) and W, 1 Vn_?, 
where orthogonality is defined by the natural inner product (., .) = J (.)(.) dn/4rr. Then, W, is a 
2n + 1 dimensional subspace of V,,, and we obtain an orthogonal decomposition 

v, = W” $ w,_, $ . . . $ w,. (3.10) 
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If we take bases of W,,,‘s as a basis of V,, we obtain the desire expansion, and the coefficient 
tensors are determined independently of each other. This is just an extension of the “Schmidt 
orthogonalization” of the vectors 1, ni+, . . . and ni, . . . nin. The decomposition (3.10) also has an 
interpretation in terms of the representation theory of the rotation group as follows. 

Let R be a three dimensional rotation. Then, the space V, is invariant to rotation n + Rn, 
because Riji, . . . RiAi.ni . . . ni” is again a vector of V,. Therefore, a basis of V, induces a 
“representation” D (n+lkn+w o t f h e rotation group SO(3) of degree (n + l)(n + 2)/2. As is well 
known, this representation is “completely reducible” and is reduced to the direct sum 

D(n+0(n+2)/2 = D, $ Dn_2@ . . . $ Do, (3.11) 

where D, is an “irreducible representation” of SO(3) of degree 2n + 1, and its representation 
space is just W,, in parallel with decomposition (3.10). 

Let us briefly summarize the classical results. The “Laplace-Beltrami operator” on S2 is 
A = (l/sin 0)( a/M) sin &?/a0 + ( l/sin2 0)a2/~~2. (In terms of quantum mechanics, -h2h is the 
“orbital angular momentum operator”.) The subspace W, is the eigenspace of A of 
eigenvalue - n(n + 1) and of multiplicity 2n + 1. Its vectors are called “spherical harmonics” of 
degree n (n is the “azimuthal quantum number” in quantum mechanics). Hence, two spherical 
harmonics with different n are mutually orthogonal. (One particular orthogonal basis of the 
same n is the “Laplace spherical harmonics” Yn,(8, 4), and in quantum mechanics m = - 

n is the “magnetic quantum number”.) As is well known, these spherical harmonics 
%nstitute a complete set for expansion in the sense of’L2(S2). 

4. FABRIC TENSORS OF THE THIRD KIND 

Let us determine the subspace W, discussed in the previous section. Let v be a vector of 
V,. Since u E V,,, it is expressed as a linear combination ci ,.,, i,ni, . . . nin of ni, . . . ni,‘s, where 

is a symmetric tensor. The condition that IJ E W, is u I V,,, i.e. (v, ni, . . . ni,_,) = 0, where 
;::,L J- 0.) d /4 n 7~ is the natural inner product. This condition becomes 

Cj ,,,, jnnj, . . . nj”ni, . . . nin_*= 0. (4.1) 

Contraction over i, = i2, . . . and in_3 = in_2 yields cj ,,,, jnnj, . . . nj, = 0, which implies, in view of 
identity (3.4) and the symmetry of ci,,,.i,, that cj,j,j3j3,,,jn_,jn_, = 0. Combination of this and 
contraction of eqn (4.1) over i3 = id, . . . and in-3 = inm2 then yields c: 

JIJIJ~J,~~.~,~,~.-~~~~~ 
= 0, and so 

on. Thus, we can conclude that any contraction of ci,,.,i, reduces to 0, or ci,,,,i, is a “deviator 
tensor”. Hence, W, is included in a space spanned by ci,,,,i,ni, . , . nin’s with all deviator tensors 

ci,...i,* However, since Ci,,.,i, has only 2n + 1 independent components and the dimension of W, 
is 2n + l., these two spaces must coincide. Next, note that ci ,,,, i,ni, . . . nin = Ci ,,,, i.n(i, . . . nin), 
where { } designates the “deviator part” of a symmetric tensor. In other words, for a symmetric 
tensor AiI.,.i,, 

A,; ,... inI = co”Ai ,... i, + C~$i,i2Ai,...i.)i,j, + . . * + CX(i,i,~i,i,, ’ . * ~in~,in)Ai,j,j3j3...jn~,jn_, 7 (4.2) 

where co” = 1 and c;, . . . , ci are determined in such a way that any contraction of A,i,,,.i.l is 
zero. After some manipulation, we obtain 

c; = (-lP(;)(;$)/(2n; 1). (4.3) 

Now, we have shown that W, is a space spanned by ci,,,,i,ni, . . . nin’s with all deviator tensors 

cil...in, but it is the same as the space spanned by ci, ,,,i.n(i, . . . ni,)‘s with all tensors ci, ,,,i,, which 
implies that W, is spanned by n{i, . . . nin{S. Thus, the expansion takes the form 

f(n) = & [D + Dijn(inj) + Dijkln(injnknl) + * * ‘1. (4.4) 
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We call the coefficient tensor Di,,.,i, ‘the “fabric tensor of the third kind” of rank n. It is 
determined by the least square error method. Since each term is orthogonal to the rest, each 
coefficient is determined independently of the rest. By definition (4.4), Di,,,,i, is determined as a 
deviator tensor. In view of eqn (3.4), it is concluded that 

(4.5) 

Since Di, i, is a deviator tensor, expansion (4.4) is also written as 

Example 4.1 

D= 1, (4.7) 

(4.8) 

(4.10) 

Once Dir, . . . and Di ,... in are known, we can compute I;;,,,.i” by “summing” them up: 

Fi,...i, = Q,...i, + &i,i2Di3...in) -t &ili~&$is...in) + * . * + S(i,i,&,i, * * * h,_,i,). (4.11) 

Hence, the a:‘s in eqn (3.6) are given by 

Conversely, if Fi, ,,,i,‘s are given, Di, ,,.i, is obtained by taking the “difference” 

Q,...i, =Fi,...i”--(i,i*Fi,,_,in). 

(4.12) 

In the next section, we show that h(i, . . . niJ is indeed a spherical harmonic of degree n. 
Hence, eqn (4.4) or (4.6) is nothing but the spherical harmonics expansion. The first term in eqn 
(4.4) or (4.6) is always 1, and the “normalization” _f f(n) dn = 1 is always satisfied, because all 
the subsequent terms are orthogonal to 1. This illustrates the significance of the expansion (4.4) 
or (4.6) with respect to mutually orthogonal subspaces. Moreover, with this formulation, we can 
also make use of analogies with physical problems such as the potential theory in elec- 
trodynamics as is seen in the next section. This provides us with a physical interpretation of the 
tensor Dil...i,, which makes it easy to understand its intuitive meaning, 

So far, we have discussed only the case of symmetric distributions. If the data are “truly 
directional” and the distribution is not symmetric, then we must add terms of hi, . . . “in of odd 
powers. However, subspaces V,, V,, . . . are orthogonal to V,, Vz, . . . . Hence, expansions in 
odd power terms can be treated independently of expansions in even power terms and is in 
complete parallel with that of even power terms, e.g. n{i, . . . tIiJ is a spherical harmonics of 
degree n for odd n, too. 

5.MULTIPLEMOMENTEXPANSIONANDMULTIPOLEMOMENTTENSORS 

Consider the following problem. Suppose f(n) is a surface charge density on a unit sphere 
located at the origin. Then, what is the electrostatic potential $J at a given point r far away from 
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the sphere? If a unit point charge is placed at r’, the potential at r is, as is well known, 
l/p = l/l\r - r’\l + const. (in esu). Let the arbitrary constant be zero. Since jjr’ll &Ilrll, it is 
approximated by a Taylor series with respect to r’ around the origin 

(5.1) 

where ai denotes alar,. Note ai; . . . ai,(l/p)(,*=, = (-l)“ai, . . . ai,(l/r). (r = Ilrll.) NOW, the tensor 
ai, . . . &(1/r) is a homogeneous form of degree -n - 1 in x, y and z and is a deviator tensor, 
because l/r is a harmonic function, i.e. A(l/r) = 0, where A = aiai is the Laplacian operator. 
Comparing the coefficients and noting the uniqueness of the deviator part, we can conclude 

4, . . . ,, r 
a, 1 = (-1)“(2fl)! ?I i * s. ?l, 

0 yn, +-I+ (5.2) 

Since this is also a harmonic function, nil, . . . niJr”+’ is harmonic, and hence, as is well known, 
r”Q . . . nin) is also harmonic, which confirms that n(i, . . . niJ is a spherical harmonic of degree n. 
Since both sides of eqn (5.2) is a deviator tensor, we can replace r:, . . . r\. in eqn (5.1) by its 
deviator part r;i, . . . rid. Thus, we obtain a solution of the original potential problem in the form 

where 

(5.3) 

(5.4) 

is what is usually referred to as the “multipole moment tensor”. In particular, Qij is the 
“quadrupole moment tensor”. Equation (5.3) is known as the “multipole moment expansion”. 
Comparing eqn (5.4) and eqn (4.5), we can see 

(5.5) 

if the observed data are interpreted as electric charges. Thus, eqn (4.6) is also interpreted as a 
multipole moment expansion, Dir describing the quadrupole moment in particular. This also 
indicates the significance of using Di,,,,i, instead of Fi,.,.i,. 

Some statisticians interpret the data as unit mass points on a unit sphere and calculate the 
“moment of inertia” to characterize the distribution[l3]. It is expressed as a tensor Jij = 
N(6ij - Nij) in our notation. This mechanical analogy also helps our intuitive understanding of 
the data distribution. 

6. EXPANSIONINTHELAPLACESPHERICALHARMONICS 

AS was shown, 2n + 1 independent n(i,. . . nin)‘s are spherical harmonics of degree n, but they 
are not mutually orthogonal. Of course, orthogonalization is possible, and one such orthogonal 
basis is the “Laplace spherical harmonics” Y”,,,(@, +), m = - n, . . . n, defined by 

(6.1) 

for m 2 0, and 

yn.-d-4 4) = (-wtde, 91, (6.2) 

for m <O. Here, P:(x) is the “associated Legendre function”, and * denotes the complex 
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conjugate. They are orthonormal, or “unitary” to be specific, in the sense of 

and, as is well known, they form a complete orthonormal set on a unit sphere S2 in L2. Hence, 
we can use them for the expansion. However, we must fix a specific coordinate system, in 
reference to which the Laplace spherical harmonics are to be defined, and the expression is not 
invariant to coordinate rotations. Of course, transformation of spherical coordinates is possible, 
using the so called “addition theorem”, but it does not have so simple a form as the tensor 
transformation. Still, if there is a preferred coordinate system, it is sometimes useful to express 
the expansion in terms of them. (For details, see [21], for example.) The expansion takes the 
form 

(6.5) 

The expression of Y,,, as a homogeneous polynomial of degree n in x, y and z is obtained by 
expansion of the following “generating function” of Y,,, : 

d2n+l X-iY+zr x+iyt2 n= Ym(44)~m ___- 
n!t" ( 2 

2 

2 1 ,,t=~n V/(n + m)!(n - m)! ’ 

Example 6.1 
Let n = (x, y, z). Then, 

Ym= 1, 

V/30 V/30 
Y2z=-;j-(xZ+2ixy-y2), Y2,= -2(xz+iyz), 

d/5 
Yzo= -+x*+y?-223, Y?,_, = - YT,, Y*,_z= Y;, 

y =3V?ii 
16(x4 + 4ix3y - 6x2y2 - 4ixy3 + y”), 

YI= -F(x3z+3ix2yz-3xy2z-iy3z), 

(x4 + 2ix3y - 6x2z2 + 2ixy3 - 12ixyz2 - y4+ 6y2z2), 

(6.6) 

(6.7) 

(6.8) 

Y4, = y (3x32 + 3ix*yz + 3xy2z - 4xz’ t 3iy3z - 4iyz3), 

YdO = ; (3x4 t 6x2y2 - 24x2z2 + 3y4 - 24y2z2 t 8~~). (6.9) 

The expansion coefficients are given by A,, = (Y ZJn)) from eqn (6.5). Hence, they are 
expressed as linear combinations of Ni,, i_‘S. 

Example 6.2 

Aoo= 1, (6.10) 
- 

A22=~(N11-2iN12-N22), A*,= -+?(&-ihr,,), 

AZ,= +(N,,+&-2N,I), AZ,_,= -A;,, A>,_? = A;*, (6.11) 
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- 

AN = y WI,,3 - 3iNl123 + 3N1223 - 4N1333 - 3iN2223 + 4iN2333), 

3 
Ad0 = - (3~,,,, + 6~~~~~ - 24~~~~~ + ~~~~~~~ 24~~~~~ + 8~,,,,). 8 

(6.12) 

However, it is easier to express Y,,‘s and A,,‘s in terms of n{i, . . . nin{S and Di,..,i,‘S, 
because the following identity is available: 

(m 2 0). Hence, in view of eqn (5.2) we obtain for m 2 0 

A,, = 
n! 

2 (-i)m-k(~)Dl!-~~~ 
d(2n + l)(n t m)!(n - m)! k=O . . . . . . . . . 

Example 6.3 

Azz= B II 12 22 7 21 15 13 33 , 20 5 3. (D -2iD -D ) A =“30(D -iD ) A =@D 33, 

A~=~(D,I,,-4iD,,,*-6D,,2*+4iD,*n+D2***), 

A =2d/35 
43 -jgj-- @,,,3 - 3iD,,23 - 30,223 + iD22231, 

d/lo 

A42 = -jj- (D,,33 - ‘W233 - O2233h 

2d/J 
A41 = 15 (DIM - iD& 

1 
AM = 3 03333. 

This also illustrates the importance of the tensor Di,.,.i.. 

7. TWO DIMENSIONAL DATA DISTRIBUTIONS 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

Now, the previous results are adapted to two dimensional data distributions. Here again 
v,c v2c v,c..., where V, is the vector space of functions on S’ spanned by nil.. . ni,‘s and 
its dimension is n t 1 (consider the number of l’s among i,, . . . , i,). For the same reason as 
before, it is sufficient to seek an approximation in the form 

f(n) - F& Fi, _. i,ni, . . . nin. (7.1) 

The coefficients are again determined by eqn (3.3), but identity (3.4) is replaced by 

ni,ni,. . . ni,” =% 2* 
( > 

‘,” &i,i,6iji, . . . 42n_liZn)- (7.2) 
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Then, the “fabric tensor of the second kind” also takes the form 

Fi,...i, = 2”[Ni, ..i, + aE-Z8(i,i,NiI. in)+ ’ ’ ’ + a6&i,i,Si,i, 

Example 7.1 
F= 1, 

6i,_,i,)l. (7.3) 

(7.4) 

(7.5) 

(7.6) 

Again, the same discussion applies, and we can obtain the decomposition (3.10), where 
orthogonality is defined by the natural inner product (., .) = J (.)(.) dn/27r. Then, W, is obtained 
as a two dimensional subspace of V,. The interpretation in terms of the representation theory 
of the rotation group remains the same except that a representation En+’ of the two dimen- 
sional rotation group SO(2) of degree II t 1 in V, is decomposed into the direct sum 

E “+I = E, $ E,_, $ - * * $ E,, (7.8) 

where E, (n > 0) is an irreducible representation (in the real domain) of SO(2) of degree 2 and 
E0 is the unit representation of degree 1. (In the complex domain, E, (n > 0) is further 
decomposed into two representations of degree 1, E, = E,, $ E_,.) The subspace W,, coincides 
with the representation space of E,, and is also the eigenspace of the two dimensional 
“Laplace-Beltrami operator” d*/d@ of eigenvalue -n* and of multiplicity 2. Its vectors are 
“circular harmonics” or “trigonometric functions” of degree n. Hence, circular harmonics of 
different n are mutually orthogonal, and they form a complete set for the expansion in L2(S’). 
One particular orthogonal basis of the same n is, of course, the “Fourier”’ circular harmonics 
e in8 and e-ine. As in the three dimensional case, the deviator part n(i, . . . nid spans the subspace 
W,, and f(n) is expanded in the form 

f(n) = & [D t Dijn(ini) t Dijkln(injnkn,) f *. . .]a (7.9) 

The deviator part {} is again defined by eqn (4.2), but, instead of eqn (4.3), ck’s are given by 

cl _ (-urn’* n n - ml2 _-- 
2” n - m/2 ( 1 m/2 ’ 

(7.10) 

The “fabric tensor of the third kind” is given by 

Di,. i, = 2”N(i,. i,}. (7.11) 

Example 7.2 
D= 1, (7.12) 

Dir=4[Nij-;&j], (7.13) 

Dijkr = 16 Nijkr - &ijNkr, + f $ijskl) 
[ 1 3 (7.14) 

Dijkrmn Nijklmn - i &ijNkf,n) + $ 6(&rNm”) - & &ij~kl&n) I . (7.15) 
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Since Di,,,,i. is a deviator tensor, expansion (7.9) is also written as 

f(n) = &[D + Diininj + Diiklnininknl + * * a], (7.16) 

and D = 1 so that normalization J f(n) dn = 1 is always satisfied. However, as we noted earlier, 
Di ,,,. i, has only two independent components. Let D,... , = a, and D1...r2 = b,, for example. 
Then, 

(-l)“a, k: even 
(_l)‘k-‘“26, k: o&_j 

(7.17) 

Expansion (7.9) or (7.16) is nothing but the Fourier series, and a, and b, are its Fourier 
coefficients. Namely, expansion (7.9) or (7.16) is rewritten as a Fourier series 

f(n) = $1 + a2 cos 28 + bz sin 20 + a4 cos 48 + b4 sin 40 t 3 . m]. (7.18) 

Since the general form of Di, .,.i, is known, the general form of Fi, _. i, is obtained by the 
summation of eqn (4.11). Equation (4.12) is now replaced by 

k: even 

(7.19) 

Conversely, if Fi ,,,, i,‘s are given, Di ,,,, i, is obtained by the difference of eqn (4.13). 
The electrostatic potential analogy in Section 5 becomes as follows. Here, a two dimensional 

point charge in the x - y plane is actually an infinitely long charged line with unit line density of 
charge extending parallel to the z-axis. Let f(n) be a line charge density on a unit circle located 
at the origin in the x - y plane. (Actually, of course, it is a surface charge density on an 
infinitely long cylinder extending vertically.) If a (two dimensional) unit point charge is placed 
at r’, the potential at r is 2 log (l/p) t const. (in esu), where p = \lr - r’lj. We choose the arbitrary 
constant to be 1 so that the potential equals 1 at p = 1. If Ilr’ll9Ilrll, the Taylor expansion is 
available in the form 

log:= T $ ai;. . . ai;llOg f ( )I r’=O 

r{, . . . r:“, (7.20) 

and&i... 8ih log (l/p)l,*=O = (-l)“ai, * * . Ji, log (l/r). We can easily show that 

ai, e f e 
ai” logi = (-1)“23 - l)! % *;“’ %I. (7.21) 

Since this is a harmonic function, n(i, . . . nq/r” is harmonic, and hence r”+, . . . nid is also 
harmonic, which means n{i, . . . ttid is a circular harmonic or a trigonometric function of degree 
n. As in the three dimensional case, the solution of the original potential problem is 

4(r) = \ j(n)( 1 + 2 log A) dn = 2 Qk;.i” nil ‘;i %, 
” . 

(7.22) 

where the “multipole moment tensor” is given by 

Qi,.,,i, = 2”(u - l)!nti, e e s nidy (7.23) 

for n > 0 and Q = 1 for n = 0. Hence, we can see that 

Di,...i, = tn J I)! Qi,...i. . 
(7.24) 
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As was remarked earlier, a particular orthogonal basis of W, is the “Fourier” circular 
harmonics e’“’ = cos no t i sin n0 and eeinR = cos nfl - i sin no. The complex Fourier series 
expansion takes the form 

(7.25) 

A, = 
I 

f(n) em”” dn = (e-‘““j. (7.26) 

Since eine = (x t iy)” and e-‘“’ = (x - iy)“, we can see that eziH = x2 t 2ixy - y*, emZiR = 
x2 - 2ixy - y*, etc. corresponding to Example 6.1. Corresponding to Example 6.2 are A, = 1, 
A2 = N,, - 2iNr2- N2*, A_* = AT, etc. The two dimensional version of eqn (6.13) is 

(8, t id,)” log: = (-1)“2”~‘(n - l)! $, 

for n > 0, and hence eqns (6.14) and (6.15) become 

eino = go (i)“-k( $+Y. n, . . . nzl, 

(7.27) 

(7.29) 

and A-, = AZ for n > 0. Corresponding to Example 6.4 are A2 = (D,, - 2iDr2 - D&3, etc. 

8. STATISTICALTEST FORTHE FITNESSOFTHEDISTRIBUTION 

Since n(i, . . . ni,)‘S form a complete basis in L* on S* or S’, the expansion of an empirical 
density f(n) converges in the limit to the original f(n), while our aim is to characterize f(n) by a 
smooth function with certain physical meaning. Therefore, only a small number of terms need 
be retained, but how many of them are sufficient? In order to answer this question, we must 
resort to a statistical test. 

The simplest problem is the “test of uniformity”. Suppose the computed Dir is very small 
and the distribution is almost “uniform” or “isotropic”, i.e. f(n) - 1/41r in the three dimensional 
case or f(n) - 1/2~ in the two dimensional case. Then, how small should Dir be in order to 
conclude that the true population is uniform and that the computed non-zero Dir is a statistical 
fluctuation due to the finite size of the data? This problem is solved by calculating the 
“likelihood ratio”, i.e. the probability that the observed data are generated by the uniform 
distribution over the probability that the observed data are generated by the distribution 
calculated up to the term of Dip If this ratio is too small, we cannot conclude that the true 
population is uniform. Then, the second term must be retained. The same process also applies 
to higher terms. For example, in order to test whether the term of Dijkl can be neglected or not, 
we compute the likelihood ratio with respect to the distribution up to the term of Dii vs the 
distribution up to the term of Dijkr, and so on. 

Let A be the likelihood ratio. It is known that -210g A behaves according to the x2- 
distribution, its degree of freedom being the number of independent parameters whose nullity is 
to be tested, if the number N of independently observed data is sufficiently large. It is also 
known that -2 log A is expressed as a quadratic form of the parameters to be tested, the 
coefficient being N times the “Fisher information matrix”, if N is sufficiently large. (Strictly 
speaking, these results apply when the distribution is estimated by the “maximum likelihood 
estimation”, not the “least square error approximation”, but the difference is not so significant 
if N is sufficiently large. For details, see [22], for example.) 

First, consider the test of uniformity. Let F(n) be the distribution calculated up to the 
second term from independently observed N data: 

F(n) = &[ 1 t Dijninj] or &[ 1 + Dijninj], (8.1) 
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for the three and two dimensional cases respectively. The Fisher information matrix in this case 
is a tensor defined by 

Substitution of eqn (8.1) yields 

respectively. The statistics to be tested is NIijklDijDkl, OT 

g DijDij or T DijDij, 

(8.2) 

(8.3) 

(g-4) 

respectively. Let x:(p, a) be the value of x2 whose upper probability is CY, i.e. P_rob{x* > 
&p, (Y)} = (Y, x2 obeying the $-distribution of degree of freedom p. If the value of (8.4) is 
larger than xf(5, (Y) or x:(2, (Y) respectively, the observation is “significant”, i.e. the distribution 
cannot be regarded uniform, under “significance level” CX. If we express the latter of (8.4) in 
terms of the Fourier coefficients a2 and b2 (see eqns (7.16) and (7.17)), it becomes N(a:+ b:)/2. 

A test for Dijkl is obtained similarly. Let 

F(n) = &[ 1 + Dijnihj + Dijkrninjnknl] or ++...I 

be the distribution calculated up to the term of Dijkl. The Fisher information in this case is 

zijklmnpq = 

1 aF 8F 
-- -ddn) 
F aD+r aDm”,q Q,,, =O . 

(8.5) 

(8.6) 

This integration does not yield a simple form. If we expand it in Dij and retain only 0th and first 
terms of Dij, assuming Dir is small compared to 1, we obtain 

I !$ Dij&jtl - i Dijtd~ijkrnhn ] 

~~ijk~mnpqQk&Lpq = 7 (8.7) 

for the three and the two dimensional cases respectively. (Note that DijkrDijkmDlm = 0 in the two 
dimensional case. See eqn (7.17). The statistic becomes again N(ai+ bi)/2 in terms of the 
Fourier coefficients.) This statistic is tested against x2(9, (Y) or x:(2, (w) respectively as before. 

We can also estimate the deviation, due to the finite size of data, of computed Dir and Dijkl 
from zr and D$r respectively of the true population distribution by noting that (Dij - 
D$/q/N’s and (Dir,, - D&)/q/lvlS obey the multivariate normal distribution with mean 0 and 
with variance the inverse of the respective Fisher information matrix when N is sufficiently 
large. 

9. AN EXAMPLE OF CHARACTERIZING AND TESTING DISTRIBUTIONS 

As an example, let us consider the interparticle contact distribution of granular materials. 
Figures 1 and 2 show circular histograms (“rose diagrams”) of the contact directions in an 
assembly of oval rods (a two-dimensional granular material) observed by Konishi et al. [ 161. The 
x- and y-axes are taken to coincide with the principal stress axes of the external loading. Figure 
1 describes the distribution before the loading and Fig. 2 after the loading. Let us try to quantify 
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Fig. 1. The contact distribution of a two dimensional granular material (before loading). 

\. ./ .- T 
Fig. 2. The contact distribution of a two dimensional granular material (after loading). 

this change of the packing configuration. First, consider the case of Fig. 1. The fabric tensors of 
the first kind become as follows: 

N,, = 0.5605, Nlz = 0.005328, Nz2 = 0.4395, 

Nllll = 0.4483, N 1,,2 = 0.01029, N,,22 = 0.1122, 

N ,222 = - 0.004965, NT227 = 0.3273, etc. (9.1) 

The fabric tensors of the second kind are 

F,, = 1.242, F,2 = 0.02131, Fz2 = 0.7579, 

F,,,, = 1.447, Fll12= 0.1327, F, ,22 = 0.1282, 

F ,222= -0.1114, F,,,, = 0.963 1, etc., 

which implies that the distribution density is approximated as follows: 

f(n)-& 

f(n) - $1.242~” + 0.04262xy + 0.7579~~1 

f(n) -~[1.447x4+0.5308x3y +0.7692x2y2-0.4456xy3+0.9631y4] 

(9.2) 

(0th order), 

(2nd order), 

(4th order). 

(9.3) 



Distribution of directional data and fabric tensors 163 

The corresponding approximated distributions are drawn over the rose diagram in the Fig. 1. 
The fabric tensors of the third kind are 

D,, = 0.2421, D,* = 0.02131, Dz2 = - 0.2421, 

D,,,, = 0.2052, D,,,2 = 0.1221, D , ,2* = - 0.2052, 

D ,222 = - 0.1221, D2222 = 0.2052, etc. (9.4) 

This means that the distribution density is approximated by 

f(n) = &[ 1 + 0.2421(x2 - y’) + 0.04262~~ + 0.2052(x4 - 6x2y2 + y”) + 0.4884(x3y - xy’) + . . .I, 

(9.5) 

which can be extended up to any desired order. In fact, this expression corresponds to the 
following Fourier series: 

f(n) = $1 + 0.2421 cos 28 + 0.02131 sin 28 + 0.2052 cos 46 + 0.1221 sin 40 + + . *j. (9.6) 

The eigenvalues of Njj are 0.5607 and 0.4393, and the angles made by their eigenvectors and the 
x-axis are 2.51” and 92.52” respectively. Hence, if they are taken respectively as the new x’- and 
y’-axes, the transformed fabric tensors are 

O 
I 0.7572 ’ 

(9.7) 

(9.8) 

(9.9) 

and the transformed approximation is 

f(n)= &1+0.2428(x”- y’q t0.2233(x'4-6x'2y'2t yf4)t0.3374(x"y'- x'y'3)t.. .I. 

(9.10) 

The same analysis can be done for Fig. 2, and approximations up to the fourth order are also 
plotted in it. 

Let US test the uniformity of the distribution. The statistic NDijDjj/4 (=iV(ai t ba/2) 
becomes 17.04 for Fig. 1 and 26.53 for Fig. 2. (The number of the data, N, is 577 for the former 
and 527 for the latter.) Since x%(2,0.005) = 10.60, both of them are “significant”, i.e. they cannot 
be regarded as data from the uniform distribution, with significance level 0.005. Next, consider 
the term of Dijkla Since the statistic NDrjkrDJl6 (= N(a: t b3/2) becomes 16.44 for Fig. 1 and 
6.201 for Fig. 2, the former is “significant” while the latter is not, i.e. the term of Djjkr cannot be 
neglected for Fig. 1 but it can be neglected for Fig. 2, with significance level 0.005. 

It is conjectured that the principal axes of the fabric tensors of rank 2 (of any kind) coincide 
with the principal stress axes. If they are assumed to be related to the stress tensor, then we can 
think of various possibilities [5, 6, 9-111. Since Nkk = 1, Fkk = 3 or 2 (for the three and the two 
dimensional cases, respectively) and Dkk = 0, some simple forms are 

Nij = uijijlukk, (9.11) 

Fij = 3Uij/Ukk or 2Uij/Ukk, respectively, (9.12) 

Dij = const. o{ijj. (9.13) 
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Kanatani [6, 121 assumed eqn (9.12), because in this case the distribution density approximated 
up to the second order does not take negative values as long as the stress is in a compressive 
state, i.e. aij is positive definite. In this connection, Satake[l l] proposed a form of the 
distribution density which yields the prescribed fabric tensor of rank 2 and is always positive. 
However, his form is very much complicated, involving the eigenvalues of the fabric tensor and 
the polar coordinates of its principal axes, so that physical interpretations or analogies and 
statistical tests are difficult to apply. 

The validity of the assumptions of eqns (9.11)-(9.13) must be judged from further experi- 
mental observations, of course, but this illustrates how the analysis of this paper provides us 
with useful tools to cope with this kind of problems. In the above example, we considered the 
stress tensor as an external control factor. It is clear that if quantities of higher ranks are 
involved, fabric tensors of higher ranks should be also taken into consideration. We can also 
see advantages of the use of fabric tensors over the use of spherical harmonics or Fourier 
coefficients. The fabric tensors are calculated systematically without any reference to special 
functions. Moreover, since they are tensors, they not only have a simple rule for trans- 
formations of the coordinate system but also can be directly employed in describing the 
physical laws governing the phenomenon, which should be expressed as tensor equations. At 
the same time, we can easily understand the intuitive meaning of these tensors in connection 
with the form of the distribution density, because the expansion corresponds to the multipole 
moment expansion and each Di,,,,i” describes the amount of the corresponding multipole 
moment. 

Acknowledgment-The author greatly wishes to express his thanks to Prof. S. Amari who gave him helpful advice to 
improve his origmal manuscript substantially. He also thanks Prof. M. Oda for many discussions on experimental facts. 

REFERENCES 

[I] M. ODA, Soils and Foundations 12(l), 17 (1972). 
[2] M. ODA, Soils and Foundations 12(2), 1 (1972). 
[3] M. ODA, Soils and Foundations 12(4), 45 (1972). 
[4] M. ODA and J. KONISHI, Soils and Foundations 14(4), 25 (1974). 
[S] M. ODA, J. KONISHI and S. NEMAT-NASSER, Giotechnique 30, 479 (1980). 
[6] K. KANATANI, Powder Technol. 28, 167 (1981). 
[7] K. KANATANI, Powder Technol. 30, 217 (1981). 
[8] J. CHRISTOFFERSEN, M. M. MEHRABADI and S. NEMAT-NASSER, J. Appl. Mech. 48, 339 (1981). 
[9] M. ODA, S. NEMAT-NASSER and M. M. MEHRABADI, Int. J. Numer. Anal. Methods Geomech. 6, 77 (1981). 

[lo] M. M. MEHRABADI, S. NEMAT-NASSER and M. ODA, Int. J. Numer. Anal. Methods Geomech. 6, 95 (1982). 
[I l] M. SATAKE, Deformation and Failure of Granular Materials (Proc. IUTAM Conf. 1982, Edited by P. A. Vermeer 

and H. .I. Luger), pp. 63-68. Balkema, Rotterdam (1982). 
(I21 K. KANATANI, New Models and Constitutiue Relations in the Mechanics oi Granular Materials (Proc. US-Japan 

Seminar, Edited by J. T. Jenkins and M. Satake). Elsevier, Amsterdam (1983) To be published. 
[13] K. V. MARDIA, Statistics of Directional Data. Academic Press, London (1972). 
[14] A. C. ERINGEN, Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1%2). 
[15] C. TRUESDELL and W. NOLL, The Non-linear Field Theories of Mechanics, Handbuch der Physik 111/3. 

Springer-Verlag, Berlin (1965). 
[16] J..KGNISHI, l& ODA and S. NEMAT-NASSER, Deformation and Failure of Granular Materials (Proc. IUTAM 

Conf. 1982. Edited bv P. A. Vermeer and H. J. Luger). DD. 403-412. Balkema. Rotterdam (1982). I . . 
[I71 K. KANATANI, Stereological determination of structural anisotropy, Int. J. Engng. Sci. ‘To be’published. 
1181 0. BARNDORFF-NIELSEN, Information and Exponential Families in Statistical Theory. Wiley, New York (1978). 
[I91 S. AMARI, Annals Statistics, 10(2), 357 (1982). 
[20] S. KULLBACK, Information Theory and Statistics. Wiley, New York (1959). 
[21] H. HOCHSTADT, The Functions of Mathematical Physics. Wiley, New York (1971). 
[22] E. L. LEHMANN, Testing Statistical Hypotheses. Wiley, New York (1959). 

(Received 1 February 1983) 


